• Publication

In Progress

109) W. Hu, L. Ma*, J. Zhou, Y. Wang*. Cost-effective ammonia flame thermometry with water vapor emissions using a filtered photodetectorSubmitted

108) Q. Li, L. Ma, J. Zhou, J. Li, F. Yan, J. Du, Y. Wang*. A comprehensive parametric study on NO and N2O formation in ammonia-methane cofired premixed flames: Spatially resolved measurements and kinetic analysis. Submitted

107) L. Ma, C. Zhou, Z. Wang, W. Ren, Y. Wang*. Calibration-free heterodyne phase-sensitive dispersion spectroscopy: Quantitative gas sensing and recovery of absorption spectra. Submitted


106) Q. Li, L. Fu, Z. Zhang, L. Ma, H. Ning*, Y. Wang*, H.Y. Zhao. A theoretical study on the isomerization and decomposition reaction kinetics of small unsaturated methyl esters: Methyl acrylate, methyl butenoate and methyl crotonate radicals. Combustion and Flame, 2024; 265, 113519. link

105) H. Sun, D. Wen, K-P. Cheong, L. Ma, K. Ni, W. Ren*. Cavity-enhanced dual-comb spectroscopy for sensitive OH detection in a laminar premixed flame. Proceedings of the Combustion InstituteAccept.

104) J. Zhou, J. Du, M. Zhou, Y. Wang*. On the intricacies of soot volume fraction measurements in counterflow diffusion flames with light extinction: Effects of curtain flow. Journal of Aerosol Science, 2024; 178, 106348. link

103) X. Zhu, J. Du*, Z. Yu, Y.B. Cheng, Y. Wang*. NOx Emission and Control in Ammonia Combustion: State-of-the-Art Review and Future Perspectives. Energy & Fuels, 2024; 38, 43-60. link

102) Y. Wei, X. Zhu*, B. Tian, H. Zhou, G. Issayev, Y. Cheng, T. Guiberti, Y. Wang. Excited species as heat release rate markers in laminar premixed flames of ammonia-hydrogen-air. Energy & Fuels 2024; 38, 11311-11320. link

101) Q. Li, B. Tian, L. Xu*, Y. Wang*. Effects of ammonia addition on the soot nanostructure and oxidation reactivity in n-heptane/toluene diffusion flames. Fuel Processing Technology, 2024; 257, 108090. link

100) W. Zhang, Z. Zhang, X. Han, C. Yuan, Y. Liu*, L. Ma, W. Ren. On the determination of the standing oblique detonation wave in an engine combustor using laser absorption spectroscopy of hydroxyl radical, Aerospace Science and Technology, 2024; 109344. link

99) A. Valera-Medina*, M.O. Vigueras-Zuniga, H. Shi, S. Mashruk, M. Alnajideen, A. Alnasif, J. Davis,  Y. Wang, X. Zhu, W. Yang, Y.B. Cheng. Ammonia combustion in furnaces: A review. International Journal of Hydrogen Energy 2024; 49, 1597-1618. link

98) X. Hu, Z. Shen*, Y. Wang*. On the design of a hydrogen micro-rectangular combustor for portable thermoelectric generators. Chemical Engineering and Processing - Process Intensification2024; 195, 109611. link

97) Q. Li, F. Ji, W. Wang, L. Ma*, Y. Wang. A mid-infrared laser absorption sensor for calibration-free measurement of nitric oxide in laminar premixed methane/ammonia co-fired flamesMicrowave and Optical Technology Letters 2024; 66, e33815. link

96) 周晨,马柳昊*王宇. 基于外差相敏色散光谱技术的宽动态范围甲烷气体检测.中国光学,2024;  link

95) 任伟*马柳昊,顾明明. 面向燃烧在线监测的激光传感技术进展.工程热物理学报,已录用.

94) 纪飞宇,李青,马柳昊,杜建国*王宇. 氨气/甲烷层流预混火焰NO生成特性研究.工程热物理学报已录用.

93)魏明亮,李志丹,田波,李青,颜伏伍,王宇*. 长径比对颗粒物捕集器压降交点及内部流场的影响.吉林大学学报,已录用.


92) M. Zhou, L. Xu, F. Yan, S.H. Chung, Y. Wang*. Effects of oxygen partial premixing on soot formation in ethylene counterflow flames with oscillating strain rates. Combustion and Flame 2023; 258,112442. link

91) 张莉*,薛勃飞*,刘玉新,王宇,吴云,张华,杨新春,何帅,蒋三平,李骏,张清杰*. 氨氢融合新能源交叉科学前沿战略研究.科学通报,2023; 68, 3107-3112. link

90) P. Jiang, L. Xu*, Q. Wang, Z. Wang, S.H. Chung, Y. Wang*. Experimental and kinetic study on aromatic formation in counterflow diffusion flames of methane and methane/ethylene mixtures. Fuel 2023; 354, 129304. link

89) J. Zhang, F. Yan, Y. Wang*. Sensitivity of soot formation to strain rates in counterflow diffusion flames of various C3-C5 alkanes and alcohols. Fuel, 2023; 333,126321. link

88) J. Zhang, L. Xu*, F. Yan, M. Zhou, Y. Wang*. Effects of ammonia addition on sooting characteristics of ethylene counterflow diffusion flames with oscillating strain rates. Energy & Fuels, 2023; 37, 19950-19958. link

87) L. Ma, W. Du, D. Wen, Y. Wang*. Infrared multi-spectral soot emission for robust and high-fidelity flame thermometry. Optics Letters 2023; 48, 980-983. link

86) L. Ma*, W. Wang, C. Zhou, Y. Wang*. A laser absorption sensor for fuel slip monitoring in high-humidity flue gases from ammonia combustion. Measurement Science and Technology  2023; 34, 094005. link

85) J. Zhang, M. Zhou, F. Yan, C. Yu,  Y. Wang*. Effects of inlet flow non-uniformities on thermochemical structures and quasi-one-dimensional simulation of sooting counterflow diffusion flames.  Physics of Fluids 2023; 35, 023614. link

84) J. Zhang, F. Yan, P. Jiang, M. Zhou, Y. Wang*. Chemical and sooting structures of counterflow diffusion flames of butanol isomers: An experimental and modelling study.  Combustion Science and Technology 2023; 195, 2165-2190. link

83) L. Ma, W. Hu, W. Wang, Y. Wang*. Transfer learning-based multi-wavelength laser sensor for high fidelity and real-time monitoring of ambient temperature and humidity. Applied Optics 2023; 62, 5932-5945. link

82) Q. Wang, L. Xu*, Y. Wang*. Effects of H2 addition on soot formation in counterflow diffusion flames of propane: A comparative analysis with He and N2 addition. International Journal of Hydrogen Energy 2023; 48, 38878-38889. link

81) G. Sheng, J. Han, L. Ma*, W. Wang, Y. Wang. Mid-infrared absorption tomography  for in situ analysis of thermochemical structure in natural gas-fired cooker flame. Microwave and Optical Technology Letters 2023; 65, 1215-1222. link

80) 刘宁博,赵逸佳,陆盛曜,马柳昊*热化学参数非均匀分布对双色激光吸收光谱测量碳烟火焰温度的影响.光学精密工程 2023;31(19):2799-2808. link

79) 田波,李青,魏明亮,李志丹,王宇*. PODE2-4掺混正庚烷/甲苯燃烧碳烟颗粒理化性质影响研究.西安交通大学学报,2023;57(12):120-128. link

78) 余超,李国柱,周梦祥,王宇*. 高可控非稳态对冲扩散火焰的实现及其时变流场特征.西安交通大学学报,2023; 57(02):49-56. link

77) 陈向阳,周梦祥,李青,王宇*. 二聚环戊二烯掺混对扩散火焰碳烟特性的影响.内燃机学报, 2023; (02):131-140. link


76) G. Li, M. Zhou, Y. Wang*. Sensitivity of soot formation to strain rate in steady counterflow flames determines its response under unsteady conditions. Combustion and Flame 2022; 241,112107. link

75) L. Xu, Y. Wang*, D. Liu*. Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel 2022; 313,122635. link

74) M. Zhou, F. Yan, L. Ma*, P. Jiang, Y. Wang*, S.H. Chung. Chemical speciation and soot measurements in laminar counterflow diffusion flames of ethylene and ammonia mixtures. Fuel 2022; 308, 122003. link

73) Z. Zhou, Y. Li*, J. Zhang, Y. Wang, F. Yan, H. Xu. Effects of component proportions on multi-jet instant expansion of binary solutions under flash boiling conditions. Fuel 2022; 308, 122018. link

72) L. Ma, K-P. Cheong*, M. Yang, C. Yuan, W. Ren*. On the quantification of boundary layer effects on flame temperature measurements using line-of-sight absorption spectroscopy. Combustion Science and Technology 2022; 194,  3259-3276. link

71) Y. Deng, P. Zou, X. Kang*, Y. Wang*. Experimental investigations on non-premixed methane-air flames in radial microchannels with a controlled temperature profile. Combustion Science and Technology 2022; 194, 3318-3339. link

70) K. Xu, L. Ma, J. Chen, X. Zhao, Q. Wang, R. Kan, Z. Zheng*, W. Ren*. Dual-comb spectroscopy for laminar premixed flames with a free-running fiber laser. Combustion Science and Technology 2022; 194, 2523-2538. link

69) J. Zhou, M. Zhou, L. MaY. Wang*. Slight asymmetry induces significant distortion in soot volume fraction measurements in counterflow diffusion flames with diffuse back-illumination imaging. Optics Express 2022; 30, 6671-6689. link

68) D. Wen, L. Ma*, Y. Wang*. Effects of thermochemical non-uniformity on line-of-sight laser absorption thermometry in counterflow diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer 2022; 277, 107990. link

67) G. Sheng, L. Ma*, D. Wen, Y. Wang*. Simultaneous measurements of temperature, CO2 concentration and soot volume fraction in counterflow diffusion flames using a single mid-infrared laser. Applied Physics B 2022,128,62. link

66) Z. Wang, W. Wang, L. Ma, P. Fu, W. Ren, X. Chao*,Mid-infrared CO2 sensor with blended absorption features for non-uniform laminar premixed flames. Applied Physics B 2022,128,31. link

65) W. Du, D. Wen, L. MaY. Wang*. Development and validation of a hybrid constraint spectral thermometry for laminar sooting flames. Applied Optics 2022, 61, 8341-8353. link

64) B. Huang, Z. Shen*. Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery. Energy 2022; 246, 123375. link

63) Z. Shen, B. Huang*, X. Liu. Effect of structure parameters on the performance of an annular thermoelectric generator for automobile exhaust heat recovery. Energy Conversion and Management 2022; 256, 115381. link

62) L. Xu, M. Zhou, Y. Wang*, D. Liu*. Probing sooting limits in counterflow diffusion flames via multiple optical diagnostic techniques. Experimental Thermal and Fluid Science 2022, 136, 110679. link

61) Z. Shen, S. Chen, B. Chen. Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation. Journal of Energy Storage 2022, 45: 103724. link

60) L. Ma*, K-P. Cheong*, K. Duan, W. Ren. Hybrid constraint multi-line absorption spectroscopy for non-uniform thermochemical measurements in axisymmetric laminar and jet flames. Optics and Lasers in Engineering 2022, 154, 107014. link

59) W. Duan, F. Yan, H. Zhang, L. Ma*, D. Wen, W. Wang, G. Sheng, Y. Wang, Q. Wang*. A laser-based multipass absorption sensor for sub-ppm detection of methane, acetylene and ammonia. Sensors 2022, 22(2), 556. link

58) J. Wang, F. Yan*, G. Zhang, W. Zhang, D. Yan, J. Zhang, Z. Chen, Y. Wang. Effects of water injection on combustion emission and knock characteristics of turbocharged direct injection gasoline engine. International Journal of Automotive Technology 2022, 23, 899-912. link

57) X. Kang, Y. Wang*. Transient process of methane-oxygen diffusion flame-street establishment in a microchannel. Frontiers in Energy 2022; 16: 988-999. link

56) K. Duan, D. Wen, Y. WangL. Ma*, K-P. Cheong, C. Yuan, W. Ren. Development of an infrared laser absorption sensor for non-intrusive gas temperature measurements. Energetic Materials Frontiers 2022; 3, 10-17. link


55) P. Jiang, M. Zhou, D. Wen,  Y. Wang*. An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling. Combustion and Flame 2021; 234,111622. link

54) Y. Shang, Z. Wang, L. Ma, J. Shi, H. Ning*, W. Ren*, S. Luo. Shock tube measurement of NO time-histories in nitromethane pyrolysis using a quantum cascade laser at 5.26 μm. Proceedings of the Combustion Institute 2021; 38:1745-52. link

53) M. Zhou, F. Yan, X. Zhong, L. Xu, Y. Wang*. Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames. Fuel 2021; 291, 120089. link

52) M. Raza, L. Ma*, S. Yao, L. Chen, W. Ren*. High-temperature dual-species (CO/NH3) detection using calibration-free scanned-wavelength-modulation spectroscopy at 2.3 μm. Fuel 2021; 305, 121591. link

51) K. Duan, L. Ma, Y. Yi, W. Ren*. Tunable diode laser-based two-line thermometry: a non-contact thermometer for active body temperature measurement. Applied Optics 2021; 60, 7036-7042. link

50) Z. Shen, S. Chen, X. Liu, B. Chen. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries. Renewable and Sustainable Energy Reviews 2021; 148: 111301. link

49) L. Xu, F. Yan, M. ZhouY. Wang*. An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy 2021; 218, 119479. link

48) L. Ma*, K. Duan, K-P. Cheong*, W. Ren. Multispectral infrared absorption spectroscopy for quantitative temperature measurements in axisymmetric laminar premixed sooting flames. Case Studies in Thermal Engineering 2021; 28, 101575. link

47) Q. Mu, F. Yan, J. Zhang, L. Xu*, Y. Wang. Experimental and numerical study on the sooting behaviors of furanic biofuels in laminar counterflow diffusion flames. Energies 2021; 14, 5995. link

46) B. Huang, L. Tian, Q. Yu, X. Liu, Z. Shen*. Numerical analysis of melting process in a rectangular enclosure with different fin locations. Energies 2021; 14(14): 4091. link

45) J. Zhou, M. Zhou, L. Ma*, Y. Wang*. Planar light extinction measurement of soot volume fraction in laminar counterflow diffusion flames. Frontiers in Mechanical Engineering 2021; 7, 720917. link


44) L. Xu, F. Yan, W. Dai, M. Zhou, S.H. Chung, Y. Wang*. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels. Combustion and Flame 2020; 216, 24-28. link

43) Z. Li, P. Liu*, P. Zhang, Y. Wang, H. He, S.H. Chung, W.L. Roberts. Role of dimethyl ether in incipient soot formation in premixed ethylene flames. Combustion and Flame 2020; 216, 271-279. link

42) H. Ning, J. Wu, L. Ma, W. Ren*. Exploring the pyrolysis chemistry of prototype aromatic ester phenyl formate: Reaction pathways, thermodynamics and kinetics. Combustion and Flame 2020; 211: 337−46. link

41) L. Xu, F. Yan, Y. Wang*. S.H. Chung. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame 2020; 213, 14-25. link

40) W. Wang, L. Xu, J. Yan, Y. Wang*. Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames. Fuel 2020; 267, 117121. link

39) W. Dai, F. Yan, L. Xu*, M. Zhou, Y. Wang*. Effects of carbon monoxide addition on the sooting characteristics of ethylene and propane counterflow diffusion flames. Fuel 2020; 271, 117674. link

38) D. Wen, Y. Wang*. Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser. Optics Express 2020; 28, 37879-37902. link

37) L. Xu, F. Yan, Y. Wang*. A comparative study of the sooting tendencies of various C5–C8 alkanes, alkenes and cycloalkanes in counterflow diffusion flames. Applications in Energy and Combustion Science 2020; 1–4,100007. link

36) B. Sun, X. Kang*, Y. Wang*. Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combustion performances. Energy 2020; 207, 118194. link

35) L. Ma, K-P. Cheong, H. Ning, W. Ren*. An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation. Experimental Thermal and Fluid Science 2020; 112:110013. link

34) L. Tian, X. Liu, S. Chen, Z. Shen*. Effect of fin material on PCM melting in a rectangular enclosure. Applied Thermal Engineering, 2020; 167: 114764. link

33) M. Raza, L. Ma, C. Yao, M. Yang, Z. Wang, W. Ren*, Q. Wang, R. Kan. MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 µm. Optics and Laser Technology 2020; 130:106344. link

32) M. Yang, K. Liu, L. Ma, K-P. Cheong, Z. Wang, W. Ho, W. Ren*. Time-resolved characterization of non-thermal plasma-assisted photocatalytic removal of nitric oxide. Journal of Physics D: Applied Physics 53 (2020) 01LT02 (7pp). link

31) L. Zhao, W. Yao*, Y. Wang, J. Hu. Machine learning-based method for remaining range prediction of electric vehicles. IEEE Access 2020; 8:212423-212441. link



30) Y. Wang*, S.H. Chung*. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 2019; 74:152-238. link

29) F. Yan, L. Xu, Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combustion and Flame 2019; 202:228-42. link

28) X. Kang, B. Sun, J. Wang, Y. Wang*. A numerical investigation on the thermo-chemical structures of methane-oxygen diffusion flame-streets in a microchannel. Combustion and Flame 2019; 206:266-81. link

27) J. Wu, H. Ning, L. Ma, P. Zhang and W. Ren*. Cascaded group-additivity ONIOM: A new method to approach CCSD(T)/CBS energies of large aliphatic hydrocarbons. Combustion and Flame 2019; 201:31-43. link

26) L. Ma, Z. Wang, K-P. Cheong, H. Ning, W. Ren*. Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements. Proceedings of the Combustion Institute 2019; 37: 1329−1336. link

25) N.M. Mahmoud, F. Yan, M. Zhou, L. Xu, Y. Wang*. Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames. Energy & Fuels 2019; 33:5582-96. link

24) Z. Shen, Li. Tian, X. Liu*. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Conversion and Management 2019; 195: 1138-1173. link

23) F. Yan, M. Zhou, L. Xu, Y. Wang*, S.H. Chung. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Experimental Thermal and Fluid Science 2019; 100:259-70. link

22) N.M. Mahmoud, F. Yan, Y. Wang*. Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames. Journal of the Energy Institute 2019; 92:288-97. link


21) Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. Combustion and Flame 2018; 192:71-85. link

20) L. Xu, F. Yan, M. Zhou, Y. Wang*, S.H. Chung. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combustion and Flame 2018; 197:304-18. link

19) Z. Li, H.M.F. Amin, P. Liu*, Y. Wang, S.H. Chung, W.L. Roberts. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combustion and Flame 2018; 197:463-70. link

18) L. Ma, H. Ning, J. Wu, W. Ren*. In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry. Combustion Science and Technology 2018; 190(3),392−407. link

17) L. Ma, Z. Wang, K-P. Cheong, H, Ning, and W. Ren*. Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy. Applied Physics B: Lasers and Optics 2018; 124:117. link

16) F. Yan, L. Xu, Y. Wang*. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 2018; 82:1457-88. link

15) Z. Shen, X. Liu*, S. Chen, S. Wu, L. Xiao, Z. Chen. Theoretical analysis on a segmented annular thermoelectric generator. Energy 2018,157: 297-313. link

14) L. Xu, F. Yan, Y. Wang*. Effects of Hydrogen Addition on the Standoff Distance of Premixed Burner-Stabilized Flames of Various Hydrocarbon Fuels. Energy & Fuels 2018; 32:2385-96. link

13) L. Ma, H. Ning, J. Wu, K-P. Cheong, W. Ren*. Characterization of temperature and soot volume fraction in the laminar premixed sooting flame: laser absorption/extinction measurement and 2D CFD simulation. Energy & Fuels 2018; 32(12), 12962−70. link

12) J. Wu, H. Ning, L. Ma, and W. Ren*. Pressure-dependent kinetics of methyl formate reaction with OH at combustion, atmospheric and interstellar temperature. Physical Chemistry Chemical Physics 2018; 20(41), 26190−99. link

11) H. Ning, D. Liu, J. Wu, L. Ma, W. Ren*, A. Farooq. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate. Physical Chemistry Chemical Physics 2018; 20, 21280−85. link

10) K-P. Cheong, L. Ma, Z. Wang, W. Ren*. Influence of Line Pair Selection on Flame Tomography Using Infrared Absorption Spectroscopy. Applied Spectroscopy 2018; 73(5): 529−39. link


9) S. Park, Y. Wang*, S.H. Chung, S.M. Sarathy. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Combustion and Flame 2017; 178:46-60. link

8) K. Moshammer, L. Seidel, Y. Wang, H. Selim, S.M. Sarathy, F. Mauss, N. Hansen*. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames. Proceedings of the Combustion Institute 2017; 36:947-55. link


7) Y. Wang*, S.H. Chung. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combustion and Flame 2016; 165:433-44. link

6) P. Selvaraj, P.G. Arias, B.J. Lee, H.G. Im*. Y. Wang, Y. Gao, et al. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combustion and Flame 2016; 163:427-36. link

5) Y. Wang*, S.H. Chung. Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combustion Science and Technology 2016; 188:805-17. link

2015 & before

4) Y. Wang, A. Raj, S.H. Chung*. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combustion and Flame 2015; 162:586-96. link

3) Y. Wang, S.H. Chung*. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index. Combustion and Flame 2014; 161, 1224-34. link

2) Y. Wang, A. Raj, S.H. Chung*. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame 2013; 160, 1667-1676. link

1) P.H. Joo, Y. Wang, A. Raj, S.H. Chung*. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index. Proceedings of the Combustion Institute 2013; 34, 1803-9. link